Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123728, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458520

RESUMO

Fish is an important source of animal protein for local communities in the Amazon basin, whose food safety must be assured. However, certain potential toxicants elements, can bioaccumulate in fish species, which inhabit anthropogenically polluted waters, ultimately posing a risk to human health. In the present study, the concentrations of nine elements (Al, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were determined in raw and cooked samples of eight fish species consumed in Santarém (northern Brazil, Amazon biome). The potential for non- carcinogenic human health risks linked to the consumption of cooked fish were evaluated for adults and children in two different scenarios. Four carnivores, three omnivores and one detritivore, all of them regularly marketed and consumed by the Santarém population, were the target species. The safety reference values set by national and international guidelines for humans, in both raw and cooked preparations, were used. In most cases, the cooking process showed a trend to increase elements concentrations compared to raw samples, however the differences were not significant. Moreover, the risk assessment showed danger for children in relation to Hg from the consumption of fish, in both scenarios evaluated. For adults, in one of the scenarios, there was a health risk associated to Hg as a result of carnivorous fish consumption. In a context of combined exposure to all elements, children were at risk when consuming fish, especially carnivorous and omnivorous species. For adults, the mixture of elements posed a risk to health human only for carnivorous fish consumption. The results reveal an environmental scenario of Hg contamination, which requires monitoring actions to preserve the aquatic biodiversity and human health in the Brazilian Amazon biome.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Criança , Adulto , Animais , Humanos , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Peixes , Mercúrio/análise , Ecossistema , Medição de Risco , Culinária , Metais Pesados/análise
2.
Toxics ; 11(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624194

RESUMO

Eutrophication in water reservoirs releases algal organic matter (AOM), which is an important precursor of disinfection by-products (DBPs) formed during water treatment. Chlorella sorokiniana is a microalgae which flourishes under conditions of high light intensity and temperature, thus its prevalence in algal blooms is expected to increase with climate change. However, Chlorella sorokiniana AOM has not been previously investigated as a DBP precursor. In this context, this study evaluated the effect of AOM concentration, humic acid (HA), and pH on DBP formation from chlor(am)ination of AOM Chlorella sorokiniana. DBP yields determined by linear regression for trichloromethane (TCM) and chloral hydrate (CH) were 57.9 and 46.0 µg·mg DOC-1 in chlorination, while the TCM, CH, dichloroacetonitrile (DCAN), 1,1,1-trichloropropanone (1,1,1-TCP), and chloropicrin (CPN) concentrations were 33.6, 29.8, 16.7, 2.1, and 1.2 µg·mg DOC-1 in chloramination. Chloramination reduced the formation of TCM and CH but increased CPN, DCAN, and 1,1,1-TCP yields. AOM Chlorella sorokiniana showed a higher DBP formation than 9 of 11 algae species previously investigated in the literature. At basic pH, the concentration of TCM increased while the concentration of other DBP classes decreased. Bromide was effectively incorporated into the AOM structure and high values of bromine incorporation factor were found for THM (1.81-1.89) and HAN (1.32) at 1.5 mg Br·L-1. Empirical models predicted successfully the formation of THM and HAN (R2 > 0.86). The bromide concentration had more impact in the model on the DBP formation than AOM and HA. These results provide the first insights into the DBP formation from AOM chlor(am)ination of Chlorella sorokiniana.

3.
Environ Res ; 233: 116443, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356524

RESUMO

Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of ß-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to ß-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed ß-lactam antibiotic resistance gene, being the blaKPC widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens.


Assuntos
Enterobacter , Águas Residuárias , Enterobacter/genética , Resistência beta-Lactâmica , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
4.
Environ Sci Pollut Res Int ; 30(2): 2800-2812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35941497

RESUMO

The algal organic matter (AOM) is a problem in water treatment. Although the adsorption process is extensively applied to drinking water treatment, little information is known about the potential of new adsorbents to remove AOM. Herein, this work evaluated the removal of AOM and its main compounds (dissolved organic carbon (DOC), carbohydrate, and protein) by new adsorbents-mesoporous silica (SBA-16), graphene oxide material from citric acid (CA), and sugar (SU), and a composite of CA immobilized on sand (GSC). In general, the removal efficiencies followed the order of SBA-16 > CA > SU or GSC for DOC, carbohydrate, and protein. At environmental condition (5 mg DOC·L-1 and pH 8), high removals were reported for SBA-16 (88.8% DOC, 80.0% carbohydrate, and 99.6% protein) and CA (70.0% DOC, 66.7% carbohydrate, and 89.7% protein), while moderate removals were found for SU (60.5% DOC, 47.9% carbohydrate, and 66.5% protein) and GSC (67.4% DOC, 60.8% carbohydrate, and 57.4% protein). Based on these results, further analyses were done with SBA-16 and CA. Both adsorbents' efficiencies decayed with the pH increment of the test water. Disinfection by-products reductions found using SBA-16 - trihalomethanes (58.2 to 94.7%) and chloral hydrate (48.7 to 78.8%) - were higher than the ones using CA-trihalomethanes (45.2 to 82.4%) and chloral hydrate (40.1 to 70.8%). This study showed the potential of applying these adsorbents for AOM removal, and further investigations are suggested to increase the adsorption capacity of these adsorbents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Hidrato de Cloral , Carboidratos , Trialometanos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 29(24): 35800-35810, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061173

RESUMO

Algal organic matter (AOM) in water reservoirs is a worldwide concern for drinking water treatment; once it is one of the main precursors for disinfection by-products formation (DBPs). In this context, this study investigated the ecotoxicity of DBPs from chlorination of AOM to Ceriodaphnia silvestrii and Daphnia similis (Crustacea, Cladocera). The bioassays evaluated three scenarios, including the AOM extracted from Chlorella sorokiniana, the quenching condition used in the tests, and the DBPs formed after the chlorination of the two test waters with AOM (with and without bromide presence). The results showed that AOM has no toxic effects for the tested species under typical environmental concentration (5 mg∙L-1). However, since AOM is a potential precursor of DBPs, the toxicity of two test waters (TW-1 and TW-2) after the chlorination process (25 mg Cl2·L-1, for 7 days, at 20 °C) was tested. The sample with higher toxicity to the tested species was TW-1, in which chloroform and chloral hydrate were quantified (615 and 267 µg∙L-1, respectively). However, TW-2 showed lower concentration of chloroform and chloral hydrate (260 and 157 µg∙L-1, respectively), although bromodichloromethane, dibromochloromethane, and bromoform were also detected (464, 366, and 141 µg∙L-1, respectively). Although free chlorine is highly toxic to the tested species, the quenching conditions also affected the organisms' survival due to the use of ascorbic acid and the presence of reaction intermediates. Nonetheless, both species were more affected by TW-1 and TW-2 than the quenching condition. These results endorse the importance of removing the AOM before the disinfection process to avoid the formation of DBPs. In addition, ecotoxicological analyses could provide a more comprehensive assessment of water quality, especially considering the challenges of quantifying DBPs and other emerging contaminants.


Assuntos
Chlorella , Cladóceros , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Brometos , Hidrato de Cloral , Cloro/análise , Clorofórmio/análise , Daphnia , Desinfetantes/toxicidade , Desinfecção , Halogenação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
6.
Environ Res ; 196: 110352, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098821

RESUMO

Some heavy metals have antimicrobial activity and are considered as potential alternatives to traditional antibiotic therapy. However, heavy metal tolerance genes (HMTG) have been already detected and coding different tolerance mechanisms. Considering that certain metals are promising for antimicrobial therapy, evaluation of HMTG dissemination in bacteria from sewage is essential to understand the evolution of these bacteria and to predict antimicrobial use and control. The present study aimed to evaluate the occurrence of bacteria carrying HMTG in samples of hospital wastewater and from urban wastewater treatment plant (WWTP). The acquired HMTG were investigated by PCR in bacterial collection previously characterized for antibiotic resistant genes (ARGs). HMTG searched include arsB (arsenic efflux pump), czcA (cadmium, zinc and cobalt efflux pump), merA (mercuric reductase), pcoD (copper efflux pump), silA (silver efflux pump) and terF (tellurite resistance protein). Among 45 isolates, 82% of them carried at last one HMTG, in which the silA and pcoD tolerance genes were the most prevalent. A very strong positive correlation was found between these genes (r = 0.91, p < 0.0001). Tolerance genes merA, arsB, czcA and terF were detected in 47%, 13%, 13% and 7% of the isolates, respectively. It was found that 15 isolates co-harbored ARGs (ß-lactamase encoding genes). HMTG are probably more dispersed than ARGs in bacteria, representing a new concern for heavy metals use as effective antimicrobials. To the best of our knowledge, this is the first study on the HMTG searched in Hafnia alvei, Serratia fonticola and Serratia liquefaciens. Hospital wastewater treatment implementation and additional technologies for treatment in WWTP can reduce the impacts on water resources and HMTG spread, ensureing the environmental and human health safety.


Assuntos
Metais Pesados , Águas Residuárias , Antibacterianos , Genes Bacterianos , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Serratia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...